Total-Variation — Fast Gradient Flow and Relations to Koopman Theory

Ido Cohen et al.

The space-discrete Total Variation (TV) flow is analyzed using several mode decomposition techniques. In the one-dimensional case, we provide analytic formulations to Dynamic Mode Decomposition (DMD) and to Koopman Mode Decomposition (KMD) of the TV-flow and compare the obtained modes to TV spectral decomposition. We propose a computationally efficient algorithm to evolve the one-dimensional TV-flow. A significant speedup by three orders of magnitude is obtained, compared to iterative minimizations. A common theme, for both mode analysis and fast algorithm, is the significance of phase transitions during the flow, in which the subgradient changes. We explain why applying DMD directly on TV-flow measurements cannot model the flow or extract modes well. We formulate a more general method for mode decomposition that coincides with the modes of KMD. This method is based on the linear decay profile, typical to TV-flow. These concepts are demonstrated through experiments, where additional extensions to the two-dimensional case are given.

Examining the Limitations of Dynamic Mode Decomposition through Koopman Theory Analysis

Ido Cohen and Guy Gilboa

This work binds the existence of Koopman Eigenfunction (KEF), the geometric of the dynamics, and the validity of DMD to one coherent theory. Viewing the dynamic as a curve in the state-space allows us to formulate an existence condition of KEFs and their multiplicities. These conditions lay the foundations for system reconstruction, global controllability, and observability for nonlinear dynamics.  DMD can be interpreted as a finite dimension approximation of KMD. However, this method is limited to the case when KEFs are linear combinations of the observations. We examine the limitations of DMD through the analysis of Koopman theory. We propose a new mode decomposition technique based on the typical time profile of the dynamics. An overcomplete dictionary of decay profiles is used to sparsely represent the dynamic. This analysis is also valid in the full continuous setting of Koopman theory, which is based on variational calculus.
We demonstrate applications of this analysis, such as finding KEFs and their multiplicities, calculating KMD, dynamics reconstruction, global linearization, and controllability.

Total-Variation Mode Decomposition

Ido Cohen et al. SSVM

In this work, we analyze the Total Variation(TV) flow applied to one-dimensional signals. We formulate a relation between Dynamic Mode Decomposition(DMD), a dimensionality reduction method based on the Koopman operator and the spectral TV decomposition. DMD is adapted by time rescaling to fit linearly decaying processes, such as the TV flow. For the flow with finite subgradient transitions, a closed-form solution of the rescaled DMD is formulated. In addition, a solution to the TV-flow is presented, which relies only on the initial condition and its corresponding subgradient. A very fast numerical algorithm is obtained which solves the entire flow by elementary subgradient updates.

Introducing the p-Laplacian Spectra

Ido Cohen and Guy Gilboa Signal Processing

In this work we develop a nonlinear decomposition, associated with nonlinear eigenfunctions of the p-Laplacian for p ∈ (1, 2). With this decomposition we can process signals of different degrees of smoothness.

We first analyze solutions of scale spaces, generated by γ-homogeneous operators, γ∈R. An analytic solution is formulated when the scale space is initialized with a nonlinear eigenfunction of the respective operator. We show that the flow is extinct in finite time for γ ∈ [0, 1).

A main innovation in this study is concerned with operators of fractional homogeneity, which require the mathematical framework of fractional calculus. The proposed transform rigorously defines the notions of decomposition, reconstruction, filtering and spectrum. The theory is applied to the p-Laplacian operator, where the tools developed in this framework are demonstrated.

Stable Explicit p-Laplacian Flows Based on Nonlinear Eigenvalue Analysis

Ido Cohen, Adi Falik and Guy Gilboa SSVM 2019

Implementation of nonlinear flows by explicit schemes can be very convenient, due to their simplicity and low-computational cost per time step. A well known drawback is the small time step bound, referred to as the CFL condition, which ensures a stable flow. For p-Laplacian flows, with 1<p<21<p<2, explicit schemes without gradient regularization require, in principle, a time step approaching zero. However, numerical implementations show explicit flows with small time-steps are well behaved. We can now explain and quantify this phenomenon.

In this paper we examine explicit p-Laplacian flows by analyzing the evolution of nonlinear eigenfunctions, with respect to the p-Laplacian operator. For these cases analytic solutions can be formulated, allowing for a comprehensive analysis. A generalized CFL condition is presented, relating the time step to the inverse of the nonlinear eigenvalue. Moreover, we show that the flow converges and formulate a bound on the error of the discrete scheme. Finally, we examine general initial conditions and propose a dynamic time-step bound, which is based on a nonlinear Rayleigh quotient.

Shape Preserving Flows and the p−Laplacian Spectra

Ido Cohen and Guy Gilboa HAL

We examine nonlinear scale-spaces in the general form ut = P (u(t)), where P is a bounded nonlinear operator. We seek solutions with separation of variables in space and time u(x, t) = a(t)f (x), where f is the initial condition. We term these as shape-preserving flows and provide necessary and sufficient conditions for their existence. We show that homogeneous operators admit the above conditions. It turns out that the initial condition must admit a nonlinear eigenvalue problem, with respect to the operator P , P (f) = λf , where λ is the eigenvalue. In this case we can formulate a closed form solution for any P which is homogeneous of positive degree. Consequently, we can determine if a finite extinction time exists. We show that in all cases the extinction time is inversely proportional to the eigenvalue λ. Following the above analysis, we generalize the total-variation and one-homogeneous transforms to a homogeneous spectral representation. The notions of spectrum, generalized Parseval’s theorem and filtering are defined. We apply these formulations to the p−Laplace operator for 1 < p < 2.

Energy Dissipating Flows for Solving Nonlinear Eigenpair Problems 

Ido Cohen and Guy Gilboa Journal of Computational Physics

This work is concerned with computing nonlinear eigenpairs, which model solitary waves and various other physical phenomena. We aim at solving nonlinear eigenvalue problems of the general form T(u)=λQ(u). In our setting T is a variational derivative of a convex functional (such as the Laplacian operator with respect to the Dirichlet energy), Q is an arbitrary bounded nonlinear operator and λ is an unknown (real) eigenvalue. We introduce a flow that numerically generates an eigenpair solution by its steady state.

Analysis for the general case is performed, showing a monotone decrease in the convex functional throughout the flow. When T is the Laplacian operator, a complete discretized version is presented and anlalyzed. We implement our algorithm on Korteweg and de Vries (KdV) and nonlinear Schrödinger (NLS) equations in one and two dimensions. The proposed approach is very general and can be applied to a large variety of models. Moreover, it is highly robust to noise and to perturbations in the initial conditions, compared to classical Petiashvili-based methods. code

 

Control and Guidance of Fighter Aircraft in Autonomic Flight

M.Sc. dissertation

In this thesis we propose a control and guidance system for the autonomous execution of agile flight maneuvers, similar to those performed by a combat pilot and which utilize the entire lift capabilities of the aircraft while taking into account their limitations. This work has been motivated by applications to combat flight simulators, but is also relevant to physical autonomous aircraft.

 

This work is divided into two parts: a control system and a guidance system. The role of the control system is to follow the flight commands that are determined by the guidance system. The role of the guidance system is to choose the appropriate maneuver according the relative position with respect to the opponent aircraft.

 

Such a system can be used for two purposes: The first is the implementation for unmanned aircrafts. The second is training combat pilots using a flight simulator, which simulates an air combat with a virtual enemy aircraft.

 

This work is divided into two parts: (1) A control system for following the characteristics we chose as describers of maneuvers, normal acceleration, angular velocity and the number of G. (2) A guidance system which implements some guidance laws that are relevant to air combat. We provide below a short description of each part.

 

  1. Control System: The control system we designed controls the velocity of the aircraft and angular velocities of the heading and elevation angle. This system using a feedforward-feedback structure which is calculated by using the inverse model of a simplified (3DOF) model or the aircraft. Control variables of this design model are the angle of attack, bank angle and thrust. The controlled variables are acceleration, rate of change of heading angle and elevation angle.

 

  1. Guidance system: The role of the guidance system is to generate combat-like maneuvers that arise during an air combat situation. In this part we have developed a repertoire of basic maneuvers with the characteristics mentioned above and guidance laws which imitate actions or mirror actions during the combat. The purpose of these laws is to lower the relative advantage of the enemy and increase the relative advantage of the guided aircraft.

 

The control method has been demonstrated on a full simulation model (6DOF) of an F-16 aircraft. The guidance laws have been tested in two-dimensional scenarios, and compared with some standard guidance laws that are borrowed from the area of missile guidance using the control loops noted above.